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ABSTRACT

Let L be a uniformly elliptic second order differential operator with nice

coefficients, defined on a smooth, bounded domain in R
d, d ≥ 2, with

either the Dirichlet or an oblique-derivative boundary condition. In this

work we study the asymptotics for the principal eigenvalue of L under hard

and soft obstacle perturbations. The hard obstacle perturbation of L is

obtained by making a finite number of holes with the Dirichlet boundary

condition on their boundaries. The main result gives the asymptotic shift

of the principal eigenvalue as the holes shrink to points. The rates are

expressed in terms of the Newtonian capacity of the holes and the prin-

cipal eigenfunctions for the unperturbed operator and its formal adjoint.

The soft obstacle corresponds to a finite number of compactly supported

finite potential wells. Here we only consider the oblique-derivative Lapla-

cian. The main difference from the hard obstacle problem is that phase

transitions occur, due to the various scaling possibilities. Our results gen-

eralize known results on similar perturbations for selfadjoint operators.

Our approach is probabilistic.
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1. Introduction and statement of results

Let D ⊂⊂ R
d, d ≥ 2, be a smooth, bounded domain. Define the second order

elliptic operator L = L0 +V , where

L0 =
1

2
∇ · a∇ + b · ∇,

a = {ai,j}di,j=1 ∈ C2,α(Rd) is uniformly elliptic on R
d, b = (b1, . . . , bd) ∈

C1,α(Rd) and V ∈ Cα(Rd) , for some α ∈ (0, 1). The boundary condition

on ∂D which we relate to L is one of the following:

BC 1. Dirichlet boundary condition.

BC 2. ν-oblique derivative boundary condition. Let ν : ∂D → Sd−1 be smooth

and satisfy ν(x) · −→n (x) > 0, where −→n is the inward unit normal to D

at ∂D. Then u satisfies the ν-oblique derivative boundary condition if

∇u · ν = 0 on ∂D.

The first main result is the asymptotic behavior of the shift in the principal

eigenvalue of L when a small set, Aε, is removed from D and the Dirichlet

boundary condition is imposed on ∂Aε. We assume that Aε =
⋃n
j=1 A

j
ε , where

for each j, Ajε shrink to a point xj ∈ D, the points x1, . . . , xn being distinct,

as ε → 0. This type of perturbation is also known as a “hard obstacle”. In

the self-adjoint case, the spectral shift has been extensively studied. In fact,

a complete asymptotic expansion for the principal eigenvalue as well as for

the corresponding eigenfunction are known [5, Chapter 9]. The leading order

correction for all eigenvalues is also known [1]. The latter paper also includes a

detailed section on the history of the problem. Very little is known on the non-

selfadjoint case. In a recent paper [8], the shift for the principal eigenvalue for a

large class of non-selfadjoint operators was studied. The case considered there

is when the hard obstacle is a ball with respect to a local metric compatible with

the operator, V = 0 and BC 2. In the present work, we elaborate the methods

of [8] and develop other techniques to deal with more general setups. The

core idea is that for elliptic operators which are generators of positive recurrent

diffusion processes, the expected hitting time of a small set is asymptotically

reciprocal to the principal eigenvalue of the operator in the punctured domain.

As a byproduct, we also obtain the asymptotics for the expected hitting times of

Aε. The Khasminskii formula for the invariant measure of a positive recurrent

diffusion links the hitting time of a small set, the invariant measure and the

Newtonian capacity. In the case of BC 2, L0 is indeed a generator of a positive
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recurrent diffusion process. In the case of BC 1 and/or the case of a nonzero

potential V , one obtains a generator of a positive recurrent process by shifting

the spectrum and performing an h-transform.

The second type of perturbation considered is the “soft obstacle”: instead

of removing subsets, we define finite potentials on them. More precisely, we

fix x1, . . . , xn ∈ D and define Wε(x) = g(ε)
∑n
j=1W (|x − xj |ε−1), where W is

positive with compact support and g, the scale function, is positive and non-

increasing on (0,∞). With this terminology, the hard obstacle may be consid-

ered as an infinite potential. Our discussion of the soft obstacle is restricted

to the oblique-derivative Laplacian, due to the fact that an analytic expression

for the shift in terms of W is more difficult to obtain when L has nonconstant

coefficients. The fundamental difference between this case and the previous one

is that the asymptotics are determined by the behavior of g near 0. One regime,

corresponding to sufficiently fast blow-up of g near 0, coincides with the hard

obstacle; hence W plays no role in this regime. It is also intuitively clear that

to the other extreme, by choosing g “moderate” enough, the shift can be made

arbitrarily small and will depend linearly on W . The borderline case exhibits

the most interesting behavior: on the one hand the rate depends (nonlinearly)

on W , but on the other hand, its dependence on ε is similar to that of the hard

obstacle.

The third perturbation that we treat is of a periodic model of the crushed-ice

problem for the Neumann-Laplacian. We recall that in the crushed-ice model,

the hard obstacle consists of finitely many subsets, say identical balls, whose

number goes to infinity as the diameter of each goes to zero. One approach to

overcome the increasingly high complexity of this model is to assume that the

centers of the balls form a sequence of identically distributed random variables;

see [3] for the Dirichlet Laplacian and [6] for the Neumann-Laplacian. The as-

ymptotic spectral shift converges to some limit in probability. For deterministic

models, one may apply the method of homogenization. This is a powerful tool

for studying periodic or almost period setups [4]. Here we consider a very simple

model: we assume that the centers of the balls are located on lattice points of

δZd for some δ > 0 which depends on the radius of the balls. We show that the

naive “limit” of the spectral shifts from the previous discussions obtained by

letting the number of balls go to infinity is indeed the correct expression. This

result is not new. We have decided to include it for two reasons: To provide

some comparison with the subject of our study, the finite-obstacle case, and



184 IDDO BEN-ARI Isr. J. Math.

since our proof is very short. Of course, much more general results can be ob-

tained by homogenization. Although we only consider the principal eigenvalue,

the proof readily extends to the spectral shift of all the eigenvalues. Finally,

we remark that this result can be compared with the estimates in [9] and [10],

where a similar model was studied under a certain uniform-spacing assumption

on the centers of the balls.

Let λc denote the principal eigenvalue for L in D with boundary condition

BC 1 or BC 2. Since V is bounded, λc is finite. Let L̃ denote the formal

adjoint of L: L̃ = 1
2∇ · (a∇) − b · ∇ − ∇ · b, with a corresponding boundary

condition. We denote by φc and φ̃c the positive eigenfunctions for L and L̃,

respectively, corresponding to the eigenvalue λc, with the normalization

(1.1)

∫

D

φcφ̃cdx = 1.

In what follows we write aε ∼ bε for limε→0 aε/bε = 1.

1.1. The hard obstacle case. Before stating the result we need some defi-

nitions. Let x ∈ R
d and let {Hε}ε>0 be subsets of R

d with smooth boundaries

such that Hε
c

is connected. We say that {Hε}ε>0 shrinks regularly to x if

there exists a constant K ≥ 1 such that for all ε > 0,

(1.2) Bε/K(x) ⊂⊂ Hε ⊂⊂ BεK(x).

Let E ⊂ R
d denote a smooth domain and let A ⊂⊂ E be an open subset such

that E\A is connected. We define Capa(A,E), the capacity of A in E with

respect to a, by

Capa(A,E) = inf
{u∈C∞

c (E), u|A≥1}

1

2

∫

E

∇u · a∇udx.

The infimum is uniquely attained by a function known as the capacitary po-

tential of A in E with respect to a. The capacitary potential is the solution

to

(1.3)





1
2∇ · (a∇u) = 0 in E\A; (a)

u = 1 on ∂A; (b)

u = 0 on ∂E. (c)
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Suppose that {Hε}ε>0 shrinks regularly to x0, with Hε ⊂⊂ B1(x0). Define

Capa(Hε) =





Capa(Hε, B1(x0)), d = 2;

limR→∞ Capa(Hε, BR(x0)), d ≥ 3.

We remark that the above expression for Capa(Hε) when d ≥ 3 is equal to

Capa(Hε,R
d) and the corresponding capacitary potential is the minimal positive

solution to (1.3)(a),(b) in R
d. In the sequel, we will write Capd(ε) as a short

notation for CapId(Bε(0)). Let ωd denote the volume of the unit ball in R
d. It

is well-known that

(1.4) Capd(ε) =





π
ln ε−1 d = 2;
d(d−2)ωd

2 εd−2 d ≥ 3.

We are ready to state the main result:

Theorem 1.1: Let {x1, . . . , xn} ⊂ D and assume that for j = 1, . . . , n, {Ajε}ε>0

shrinks regularly to xj . Let Aε =
⋃n
j=1 A

j
ε and let λc,ε denote the principal

eigenvalue for L in D\Aε with the Dirichlet boundary condition on ∂Aε and

boundary condition BC 1 or BC 2 on ∂D. Then

λc − λc,ε ∼
n∑

j=1

φcφ̃c(xj)Capa(xj)(A
j
ε), as ε→ 0.

In the next theorem we find an explicit expression for the capacities appearing

in Theorem 1.1 for obstacles whose shape is “compatible” with L in the sense

we describe below. Given a positive definite d× d matrix Λ, let

(1.5) ‖x‖Λ ≡
√
x · Λx
|Λ| 1

2d

, x ∈ R
d,

where |Λ| denotes the determinant of Λ. This is a norm on R
d which preserves

the standard Euclidean volume. For ε > 0 and x ∈ R
d, let BΛ

ε (x) denote the

open ball of radius ε centered at x with respect to the ‖ · ‖Λ-norm. We will

explicitly compute Capa(x0)(B
a−1(x0)
ε (x0)), giving us the following theorem:

Theorem 1.2: Let Aε =
⋃n
j=1 B

a−1(xj)
kjε

(xj), where {x1, . . . , xn} ⊂ D and

k1, . . . , kn are positive constants. Then

λc − λc,ε ∼ Capd(ε)

n∑

j=1

φcφ̃c(xj)|a(xj)|1/dkd−2
j , as ε→ 0.
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where Capd(ε) is as in (1.4).

Ramark: In the case of BC 2, with V = 0 and n = 1, the theorem was obtained

in [8].

1.2. The soft obstacle case. Here we assume that L = 1
2∆ with BC 2.

Then φc is a positive constant and λc = 0. Let

Wε(x) = g(ε)
n∑

j=1

W (|x− xj |/ε),

where

• {x1, . . . , xn} ⊂ D.

• W : [0,∞) → [0,∞), is a nonnegative, continuous on [0, 1] and vanishes

outside [0, 1].

• g : (0,∞) → (0,∞) is non-increasing and satisfies

[0,∞] 3 γ ≡ lim
ε→0




g(ε)ε2 ln ε−1 d = 2;

g(ε)ε2 d ≥ 3.

Recall the modified Bessel function Ip(x) = e−
1
2pπiJp(ix), where Jp is the Bessel

function of order p. The function Ip admits the following power series represen-

tation [11, page 138]:

(1.6) Ip(z) =

∞∑

k=0

(z/2)p+2k

k!Γ(p+ k + 1)
.

We assume that φc ≡ 1, in which case (1.1) implies that
∫

D

φ̃c(x)dx = 1.

Theorem 1.3: Let λc,ε denote the principal eigenvalue for 1
2∆ −Wε.

(1) If γ = 0, then

−λc,ε ∼ g(ε)εd
n∑

j=1

φ̃c(xj)

∫

B1(0)

W (|x|)dx.

(2) If γ ∈ (0,∞) and W ≡ β1[0,1], β > 0, then

−λc,ε ∼ Capd(ε)

n∑

j=1

φ̃c(xj)





(1 + 1
βγ )−1, d = 2;

(
1 + d−2√

2βγ

Id/2−1(
√

2βγ)

Id/2(
√

2βγ)

)−1

, d ≥ 3.
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In particular, if d = 3, then

−λc,ε ∼ 2πε

(
1 − tanh(

√
2βγ)√

2βγ

) n∑

j=1

φ̃c(xj).

(3) If γ = ∞, then

−λc,ε ∼ Capd(ε)

n∑

j=1

φ̃c(xj).

1.3. The crushed-ice problem. To construct the model, consider the δ-

lattice consisting of the points in R
d of the form δq, q ∈ Z

d, where δ is a

positive constant. Given r > 0, we say that a δ-lattice point in D is an r-

interior point if its distance from the boundary is greater than r. For every

m ∈ N we choose δ(m), r(m), such that M(m), the number of r(m)-interior

δ(m)-lattice points of D, satisfies limm→∞M(m)/m = 1. Let {xmj }M(m)
j=1 be an

arbitrary indexing of the interior lattice points. Let K be a compact subset

of B1(0), which is smooth, symmetric about the origin and such that Kc is

connected. Let Am =
⋃M(m)
j=1 (r(m)K + xmj ). Let λ

(m)
c denote the principal

eigenvalue for 1
2∆ on D\Am, subject to the Neumann boundary condition on

∂D. Although we state the result only for the hard obstacle case, it remains

true also for the soft obstacle case, with the appropriate changes.

Theorem 1.4: If

β ≡ lim
m→∞




m ln r(m)

−1
, d = 2;

mr(m)d−2, d ≥ 3
exists,

then

− lim
m→∞

λ(m)
c =

βCapId(K)

|D| .

Ramark: Theorem 1.4 shows that the naive limit, obtained by taking the asymp-

totics given by Theorem 1.1 as n→ ∞, is achieved.

2. Proofs of Theorems 1.1 and 1.2

We begin by introducing the probabilistic machinery. Define the h-transformed

operator L by

L = (L−λc)φc ,
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where

(L−λc)φcf =
1

φc
(L−λc)(φcf).

We have

(2.1) L = L0 +a
∇φc
φc

· ∇.

We also denote by L̃ the formal adjoint of L:

(2.2) L̃ =
1

2
∇ · (a∇) −

(
b+ a

∇φc
φc

Big) · ∇ −∇ ·
(
b+ a

∇φc
φc

)
.

By the invariance of the spectrum under h-transform, it follows that the princi-

pal eigenvalue for L is 0. Instead of working with L directly, we will work with

L. The zeroth order term of L vanishes, therefore we regard L as the generator

of a diffusion process on D. We denote by X ≡ {X(t) : t ≥ 0} the canonical

process, Px(·) the probability measure for the process with X(0) = x for some

x ∈ D, and Ex(·) the expectation. With BC 1, X never hits ∂D (the drift

a∇φc

φc
prevents this). With BC 2, X is ν-reflected at ∂D. Let µ = φcφ̃c. Then

L̃µ = 0. Hence by (1.1), µ is the invariant probability density for the diffusion

X . The invariant probability measure will be denoted by µ as well. As in The-

orem 1.1, we denote the support of the obstacle by Aε =
⋃n
j=1A

j
ε ,where in the

soft obstacle case we have Ajε = Bε(xj). For a Borel set E ⊂ D, we let

τE = inf{t ≥ 0 : X(t) ∈ ∂E} and τε = τAε .

Below, U ⊂⊂ D is a smooth subdomain such that {x1, . . . , xn} ⊂ U . Let

G(·, ·) be the Green’s function for L in U . Whenever one of the two variables

of G is replaced with a measure, a function or a set, we should interpret the

expression as the integration of that variable with respect to the corresponding

measure, function or over the corresponding set (e.g., when α is a measure,

G(α, y) =
∫
D
G(x, y)dα(x), when A is a subset, G(x,A) =

∫
A
G(x, y)dy, etc.).

For ε > 0 sufficiently small so that Aε ⊂⊂ U , define a sequence of stopping

times as follows:

σ1 = inf{t ≥ 0 : X(t) ∈ ∂U},
ηk = inf{t ≥ σk : X(t) ∈ ∂Aε}, and

σk+1 = inf{t ≥ ηk : X(t) ∈ ∂U}.

The process X(σ1), X(η1), . . . is an irreducible Markov process on a compact

state space; therefore it has a unique invariant probability measure. This implies
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the existence of probability measures m1,ε on ∂Aε and m2,ε on ∂U , satisfying

Pm1,ε(X(σ1) ∈ ·) = m2,ε and Pm2,ε(X(η1) ∈ ·) = m1,ε. The next formula is

known as the Khasminskii construction for invariant measures [2]:

(2.3) µ(A) =
Em1,ε

∫ η1
0 1A(X(s))ds

Em1,εη1
, for every Borel set A ⊂ D.

We now derive a formula for the density of µ on Aε. Let y ∈ Aε and as-

sume that δ > 0 is sufficiently small so that Bδ(y) ⊂ Aε. Observe that

Em1,ε

∫ η1
0

1Bδ(y)(X(s))ds = Em1,ε

∫ σ1

0
1Bδ(y)(X(s))ds. By definition of Green’s

function, the right-hand side above equals G(m1,ε, Bδ(y)). Thus, (2.3) can be

written as

Em1,εη1 =
G(m1,ε, Bδ(y))

µ(Bδ(y))
.

Letting δ → 0, we obtain

(2.4) Em1,εη1 =
G(m1,ε, y)

µ(y)
, y ∈ Aε.

We state a sequence of propositions, which culminate with the proof of The-

orem 1.1. Then we prove Theorem 1.2. After that we return to prove the

propositions.

Proposition 2.1: As ε→ 0, the functions

(λc − λc,ε)Exτε, x ∈ D\{x1, . . . , xn}.

converge to 1, uniformly on compact subsets of D\{x1, . . . , xn}.

We now define EL, an energy functional which is an analogue in the non-

selfadjoint case of the Newtonian capacity. Our strategy is to express the

asymptotics for λc,ε−λc in terms of this energy functional and then by approx-

imation of L with a constant coefficients operator show that the asymptotics of

the energy can be expressed in terms of the Newtonian capacity and µ.

Let E ⊂ D denote a smooth subdomain and let A ⊂⊂ E be an open subset

such that E\A is connected. We define EL(A,E) by

EL(A,E) =
1

2

∫

E\A
(∇u · a∇u)µdx,
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where u is the solution to

(2.5)





Lu = 0 in E\A;

u = 1 on ∂A;

u = 0 on ∂E.

Note here that µ is uniquely determined by L — it is the invariant probability

density for the diffusion process corresponding to L. The function u will be

called the EL-capacitary potential. Let L′ = 1
2∇ · (a∇), with the co-normal

boundary condition, a∇u · −→n = 0 on ∂D, where −→n is the outward unit normal

to D on ∂D. Then the corresponding invariant density is 1/|D| and comparing

the definition of EL′ with the definition of Capa above (1.3), we observe that

for E ⊂ D,

EL′(A,E) =
1

|D|Capa(A,E).

Proposition 2.2:

EL(Aε, U) = (Em1,εη1)
−1 = (Em2,εσ2)

−1.

Proposition 2.3: Let Uj ⊂⊂ U , j = 1, . . . , n be smooth domains such that

xj ∈ Uj . Let ε0 > 0 be such that for all ε < ε0 and for all j = 1, . . . , n, Ajε ⊂⊂ Uj

and fix ε < ε0.

(1) Let u denote the EL-capacitary potential of Aε in U and let ρε =

maxx∈⋃n
j=1 ∂Uj

u(x). Then

(2.6) EL(Aε, U) ≤
n∑

j=1

EL(Ajε , Uj) ≤ (1 − ρε)
−1EL(Aε, U).

(2) Let Ω ⊂ R
d be a domain. If d = 2, assume further that Ω is bounded.

Let u denote the capacitary potential of Aε in Ω with respect to a and

let ρε = maxx∈
⋃

n
j=1 ∂Uj

u(x). Then

(2.7) Capa(Aε,Ω) ≤
n∑

j=1

Capa(A
j
ε , Uj) ≤ (1 − ρε)

−1Capa(Aε,Ω)

In both cases (1) and (2), limε→0 ρε = 0.

Here is an immediate corollary:
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Corollary 1: Let E ⊂ R
d be bounded and smooth. Then

Capa(A
1
ε ) ∼ Capa(A

1
ε , E), as ε→ 0.

Proposition 2.3 indicates that the asymptotics of EL(Aε, U) are determined

by local terms. The next lemma gives a local expression for the asymptotics of

EL(Ajε , Uj). In the trivial case where a and µ are constants, such an expression

can be readily obtained from the definitions. In the more general framework

we employ the continuity of the coefficients of L and of µ to obtain good ap-

proximation for EL in terms of the Newtonian capacity for a constant coefficient

operator. Comparing the definition of EL (above (2.5)) with the definition of

Capa (above (1.3)), this type of argument should result in an asymptotic expres-

sion which is the product of µ(xj) and Capa(xj)(Aε). The next lemma makes

the above heuristics precise. Although intuitively clear, the proof is tedious.

Proposition 2.4:

EL(A1
ε , U) ∼ µ(x1)Capa(x1)(A

1
ε ), as ε→ 0.

Theorem 1.1 follows directly from Propositions 2.1, 2.2, 2.3 and 2.4.

Proof of Theorem 1.2. Fix x0 ∈ D. For convenience, we will assume that x0 = 0

and write a for a(0). In light of Theorem 1.1, it is enough to show that as ε→ 0,

(2.8) Capa(B
a−1

ε (0)) ∼





π
ln ε−1 |a|1/2 d = 2;
d(d−2)ωd

2 |a|1/dεd−2 d ≥ 3.

The proof is straightforward. By changing variables, we transform the question

of the capacity of a ‖ · ‖a−1-ball into the question of the capacity of a ball with

respect to the identity matrix. The answer to the latter question is well-known

and is given by (1.4). Fix ρ > 0. Then

Ba
−1

ρ (0) = {x : x · a−1x < |a|−1/dρ2} = {a1/2y : y · y < |a|−1/dρ2}
= a1/2B|a|−1/(2d)ρ(0).

Therefore, if

Za
−1

(ε, 1) ≡ {x : ε < ‖x‖a−1 < 1},
then

Za
−1

(ε, 1) = a1/2|a|− 1
2dZId(ε, 1),

and we can define a bijection from the functions on Za
−1

(ε, 1) to the functions

on ZId(ε, 1) given by v → ṽ, where ṽ(y) = v(a1/2|a|−1/(2d)y). Let u be the
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capacitary potential for Ba
−1

ε (0) in Ba
−1

1 (0) with respect to a. Let ϕ be a

smooth function on Za−1(ε, 1). It follows from the change of variables formula

that

(2.9)

∫

Za−1 (ε,1)

a∇u(x) · ∇ϕ(x)dx = |a|1/d
∫

ZId(ε,1)

∇ũ(y) · ∇ϕ̃(y)dy.

If ϕ ∈ C∞
c (Za

−1

(ε, 1)), then integration by parts gives:
∫

Za−1 (ε,1)

a∇u(x) · ∇ϕ(x)dx = 0.

Thus, it follows from (2.9) that
∫
ZId(ε,1) ∇ũ(y) · ∇ϕ̃(y)dy = 0. Since ϕ̃ is

arbitrary, this implies ∆ũ = 0. Since ũ = 0 on ∂B1(0) and ũ = 1 on ∂Bε(0),

we conclude that ũ is the capacitary potential for Bε(0) in B1(0) with respect

to the identity matrix. By choosing ϕ = u we obtain from (2.9):

1/2

∫

Za−1 (ε,1)

a∇u(x) · ∇ϕ(x)dx =
|a|1/d

2

∫

ZId(ε,1)

|∇ũ(y)|2dy

= CapId(Bε(0), B1(0))

Since u is the capacitary potential for Ba
−1

ε (0) in Ba
−1

1 (0) with respect to a, the

left-hand side is equal to Capa(B
a−1

ε (0), Ba
−1

1 (0)). Thus, we have shown that

Capa(B
a−1

ε (0), Ba
−1

1 (0)) = |a|1/dCapId(Bε(0), B1(0)).

Therefore, by Corollary 1 we have

(2.10) Capa(B
a−1

ε (0)) ∼ |a|1/dCapId(Bε(0)) = |a|1/dCapd(ε).

Thus, (2.8) follows from (2.10) and (1.4).

2.1. Proof of Proposition 2.1. We need a sequence of lemmas.

Lemma 2.5: For ε > 0,

sup
x∈D\Aε

Exτε <∞.

Proof of Lemma 2.5. The proof depends on the particular boundary condition

on ∂D.

• BC 1. For δ > 0 we define the domain Dδ,

Dδ = {x ∈ R
d : dist(x,D) < δ}.

We denote the principal eigenvalue for L in Dδ\Aε with the Dirich-

let boundary condition on ∂Dδ ∪ ∂Aε by λc,ε,δ and let φc,ε,δ be the
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corresponding eigenfunction. Let K = maxKj, where Kj is the con-

stant appearing in (1.2) related to Ajε . The choice of K guarantees that

Aε ⊂⊂ AK2ε. By [7, Theorem 4.4.1], for every ε > 0 sufficiently small,

there exists δ > 0 such that

λc,ε,δ < λc.

It follows that

(2.11) (L−λc)φc,ε,δ < (λc,ε,δ − λc)φc,ε,δ < 0.

in D\AK2ε. Denote by E
L0
x the expectation for the diffusion process on

Dδ, generated by L0 and killed at ∂Dδ, with X(0) = x. Let

v(x) = E
L0
x

∫ τK2ε∧τD

0

e
∫

s
0
V (X(u))du−sλcds, x ∈ D\AK2ε.

Let GL−λc denote the Green’s function for L−λc on D\AK2ε. Then,

by the Feynman-Kac formula, it follows that

(2.12) v(x) =

∫

D\AK2ε

GL−λc(x, y)dy.

From (2.11) and the Feynman-Kac formula we obtain

φc,ε,δ(x) ≥ (λc − λc,ε,δ)E
L0
x

∫ τK2ε∧τD

0

φc,ε,δ(X(s))e
∫

s
0
V (X(u))du−sλcds

≥ v(x)(λc − λc,ε,δ) inf
x∈D\AK2ε

φc,ε,δ(x).

Since φc,ε,δ is continuous and positive on D\AK2ε, it follows that v is

bounded. Hence from (2.12) we find that v′, defined by

v′(x) =

∫

D\AK2ε

GL−λc(x, y)φc(y)dy, x ∈ D\AK2ε,

is bounded. In particular, v′ is the minimal positive solution to




(L−λc)v′ = −φc in D\AK2ε;

v′ = 0 on ∂D ∪ ∂AK2ε.

From the Hopf maximum principle it follows that ∇φc · −→n < 0 and

∇v′ · −→n < 0 on ∂D, where −→n is the outward unit normal to D at

∂D. Let w = v′/φc. By L’Hôpital’s rule and the continuity of the first
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order derivatives of v′ and φc up to the boundary, there exists a positive

constant M such that lim supx→∂D w(x) < M . Thus,

sup
x∈D\AK2ε

w(x) <∞.

Since w is the minimal positive solution to



Lw = −1 in D\AK2ε

w = 0 on ∂AK2ε,

we have that w(x) = ExτK2ε and the lemma follows.

• BC 2. φc is strictly positive in D. This implies that L is uniformly

elliptic and has a bounded drift coefficient. Therefore,

ρ = sup
x∈D\Aε

Px(τε > 1) < 1.

By the Markov property

Exτε <

∞∑

k=0

Px(τε > k) <

∞∑

k=0

ρk <∞.

The bound on the right-hand side is independent of the specific choice

of x. This implies the lemma.

Lemma 2.6: Let f ∈ Cα(D), be a function with 0 ≤ f ≤ 1 which is not

identically 0. Let

uε(x) =
Ex

∫ τε

0 f(X(s))ds

Em2,ε

∫ τε

0 f(X(s))ds
, x ∈ D\{x1, . . . , xn}.

Then limε→0 uε(x) = 1, uniformly on compacts.

Corollary 2: The function

Exτε
Em2,ετε

, x ∈ D\{x1, . . . , xn}

converges to 1, uniformly on compacts.

Proof of Lemma 2.6. Let

vε(x) = Ex

∫ τε

0

f(X(s))ds, x ∈ D\Aε.

Then

uε =
vε∫

vεdm2,ε
.
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We will prove below that there exists a positive constant K, independent of ε,

such that

(2.13) vε ≤ K

(
1 +

∫
vεdm2,ε

)
.

Since X is recurrent, limε→0

∫
vεdm2,ε = ∞ and it follows from (2.13) that

{uε} is uniformly bounded. Since Lvε = −f , it follows that {Luε} is bounded

in Cα(D). By the standard compactness argument involving the Schauder

estimates and the Ascoli-Arzella theorem, it follows that {uε} is precompact in

Cloc2 (D\{x1, . . . , xn}). Let u be a limit obtained by some subsequence. It is

clear that Lu = 0 in D\{x1, . . . , xn} and that u is bounded. We note, however,

that this argument does not imply automatically that u satisfies the boundary

condition (in BC 2). Fix x 6= y ∈ D\Aε and let ε′, ρ > 0. Then

uε(x) = Exuε(X(τBρ(y) ∧ τε′)) +
Ex

∫ τBρ(y)∧τε′

0 f(X(s))ds∫
vεdm2,ε

,

for all ε sufficiently small. Letting ε→ 0, it follows that

u(x) = Exu(X(τBρ(y) ∧ τε′)).

Letting ε′ → 0, we obtain u(x) = Exu(X(τBρ(y))). Finally, letting ρ → 0, we

have u(x) = u(y). Hence u is a constant function. We will now show that u = 1.

Indeed, by the triangle inequality,
∫
uεdm2,ε −

∫
|u− uε|dm2,ε ≤

∫
udm2,ε ≤

∫
uεdm2,ε +

∫
|u− uε|dm2,ε.

As
∫
uεdm2,ε = 1, letting ε→ 0 gives the required result. Since {uε} is precom-

pact in C2
loc and every convergent subsequence converges to 1, it follows that

{uε} converges to 1 in C2
loc, as ε→ 0.

We now return to the proof of (2.13). Fix a domain E satisfying {x1, . . . , xn}
⊂ E ⊂⊂ U . By the strong Markov property,

vε(x) = Ex

∫ τE

0

f(X(s))ds+ ExEX(τE)

∫ τε

0

f(X(s))ds, x ∈ D\E.

Since f takes values in [0, 1], the first term on the left-hand side is bounded

above by C1 ≡ maxx∈∂U ExτE < ∞, due to Lemma 2.5 The second term on

the right-hand side is an L-harmonic function on U\E, since it is equal to

Exh(X(τE)) with h(y) ≡ Ey

∫ τε

0 f(X(s))ds. By Harnack’s inequality,

ExEX(τE)

∫ τε

0

f(X(s))ds ≤ C2EyEX(τE)

∫ τε

0

f(X(s))ds, x, y ∈ ∂U,
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where C2 ≥ 1 is a constant independent of ε. By integrating the right-hand side

with respect to m2,ε we obtain

max
x∈∂U

ExEX(τE)

∫ τε

0

f(X(s))ds ≤ C2Em2,εEX(τE)

∫ τε

0

f(X(s))ds

≤ C2Em2,ε

∫ τε

0

f(X(s))ds

= C2

∫
vεdm2,ε.

Summarizing the last observations, we have proved that

(2.14) max
x∈∂U

vε(x) ≤ C1 + Em2,ε

∫ τε

0

f(X(s))ds = C1 + C2

∫
vεdm2,ε.

We now derive (2.13) from (2.14). Since Lvε = −f , it follows that

(2.15) vε(x) = Exvε(X(τU ∧ τε)) + Ex

∫ τU∧τε

0

f(X(s))ds.

Let C3 = supx∈D ExτU . Then C3 < ∞, due to Lemma 2.5. It is clear that the

second term on the right-hand side of (2.15) is bounded above by C3. Since

vε vanishes on ∂Aε, the first term on the right-hand side of (2.15) is bounded

above by maxx∈∂U vε(x). Therefore, it follows from (2.14) that:

vε(x) ≤ C1 + C2

∫
vεdm2,ε + C3,

completing the proof of (2.13).

The next lemma will be also employed in the proof for the soft obstacle case,

Theorem 1.3. In order to unify notation, we need an additional definition. Let

Lε denote the perturbation of L. For the hard obstacle, Lε corresponds to L
on the domain D\Aε, with the Dirichlet boundary condition on ∂Aε. In the

soft obstacle case (see Section 1.2), Lε = (L−λc −Wε)
φc = L−Wε on D. The

principal eigenvalue for Lε is λc,ε − λc.

Lemma 2.7: Let φε denote the positive eigenfunction corresponding to λc,ε−λc,
the principal eigenvalue for Lε, normalized by

(2.16)

∫

∂U

φε(x)dm2,ε(x) = 1.

Then {φε}ε>0 is uniformly bounded and converges to 1 in C2
loc(D\{x1, . . . , xn}),

as ε→ 0.



Vol. 169, 2009 SHIFT FOR THE PRINCIPAL EIGENVALUE 197

Proof of Lemma 2.7. Recall that in contrast to the other lemmas, which are to

be proved only for the hard obstacle case, this one we need to prove both for

the hard and the soft obstacle. We write λε as a short notation for λc,ε − λc.

Note that λε < 0. In the hard obstacle case we extend φε to D continuously,

by letting φε ≡ 0 on Aε. The first step in the proof is to show that {φε}ε>0 is

uniformly bounded. Let E ⊂⊂ D be a smooth subdomain, such that U ⊂ E.

By Lemma 2.5 and the Chebychev inequality, there exists some k ∈ N such that

ρ ≡ ln sup
x∈D\E

Px(τE > k) < 0.

Since limε→0 λε = 0, we have ρ − kλε < 0, for ε > 0 sufficiently small. Using

the identity Exe
−λετE = 1 − λε

∫∞
0 Px(τU > s)e−λεsds, we obtain

Exe
−λετE ≤ 1 − λεk

∞∑

j=0

Px(τE > kj)e−λε(j+1)k.

By the Markov property it then follows that

(2.17) M ≡ lim sup
ε→0

sup
x∈D\E

Exe
−λετE ≤ lim sup

ε→0
(1 − λεk

∞∑

j=0

ejρ−(j+1)kλε ) <∞.

Therefore, Exφε(X(τE))e−λετE defines a positive solution to the equation Lu =

λεu in D\E . By the Feynman–Kac formula, φε admits the representation

(2.18) φε(x) = Exφε(X(τE))e−λετE , x ∈ D\E.

By (2.16) and the Harnack inequality, there exists a constant c ≥ 1, such that

(2.19) lim sup
ε→0

sup
y∈∂E

φε(y) ≤ c.

From (2.17), (2.18) and (2.19) we get

(2.20) lim sup
ε→0

sup
x∈D\E

φε(x) ≤ cM.

Let E1 ⊂⊂ D be a smooth subdomain such that E ⊂⊂ E1 and let ρ and ϕ

denote the principal eigenvalue and eigenfunction for L in E1 with the Dirichlet

boundary condition on ∂E1. Since ρ < 0, there is no loss of generality assuming

that λε > ρ. On E1, denote the h-transformed operator

(Lε − λε)
ϕ = Lε + a

∇ϕ
ϕ

· ∇ − λε + ρ.

In the hard obstacle case, the zeroth order term of (Lε−λε)ϕ is ρ−λε, which is

strictly negative. In the soft obstacle case, this term is −Wε+ρ−λε which is also
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strictly negative. Furthermore, φε/ϕ is (Lε − λε)
ϕ-harmonic on the respective

domains, which are E\Aε for the hard obstacle and E for the soft obstacle. The

maximum principle gives

(2.21) max
x∈E

φε
ϕ

(x) = max
x∈∂E

φε
ϕ

(x)

Let M ′ =
supx∈E ϕ(x)

infx∈E ϕ(x) <∞. Then,

(2.22) lim sup
ε→0

max
x∈E

φε(x) ≤M ′ max
x∈∂E

φε(x) ≤M ′c,

where the first inequality follows from (2.21) and the second one follows from

(2.19). Now (2.22) and (2.20) imply that indeed {φε}ε>0 is uniformly bounded.

Due to the uniform boundedness, the standard compactness argument implies

that {φε}ε>0 is precompact in the C2
loc-norm. In particular, the convergence is

uniform on compacts. Let φ be a limit obtained by some subsequence. Clearly

Lφ = 0 in D\{x1, . . . , xn}. The positivity of φ is guaranteed from (2.16), the

Harnack inequality and the uniform convergence on compacts. Let x 6= y be

in D\{x1, . . . , xn}. Since φ is bounded and since {x1, . . . , xn} are polar for the

L-diffusion, we see that φ(x) = Exφ(X(τBρ(y))), for all ρ > 0 sufficiently small.

By the bounded convergence theorem, φ(x) = limρ→0 Exφ(X(τBρ(y))) = φ(y).

Then by (2.16), φ = 1. Hence 1 is the limit of every convergent subsequence.

This implies that {φε}ε>0 converges to 1 in C2
loc.

We return to the hard obstacle case and prove Proposition 2.1. We adopt the

notation from Lemma 2.7. Since Lφε = (λc,ε − λc)φε on D\Aε and φε = 0 on

∂Aε, we observe that

φε(x) = (λc − λc,ε)Ex

∫ τε

0

φε(X(t))dt.

Integrating both sides above with respect to dm2,ε, it follows from (2.16) that

(λc − λc,ε)
−1 = Em2,ε

∫ τε

0

φε(X(t))dt.

By Khasminskii’s construction in (2.3) and the fact that for all f ∈ C(D),

Em2,ε

∫ σ2

0
f(X(t))dt = Em1,ε

∫ η1
0
f(X(t))dt, we obtain

(λc − λc,ε)
−1 = Em2,ε

∫ σ2

0

φε(X(s))ds− Em1,ε

∫ σ1

0

φε(X(s))ds

=

(∫
φεdµ

)
Em2,εσ2 − Em1,ε

∫ σ1

0

φε(X(s))ds.
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As ε→ 0, φε are uniformly bounded due to Lemma 2.7, and Em1,εσ1 are clearly

also uniformly bounded. Thus,

(λc − λc,ε)
−1 =

(∫
φεdµ

)
Em2,ετε +O(1), as ε→ 0.

We conclude that

(λc − λc,ε)Em2,ετε =

(∫
φεdµ+ o(1)

)−1

.

By Lemma 2.7 and the bounded convergence theorem, the right-hand side goes

to 1 as ε→ 0. Thus, Proposition 2.1 follows directly from Corollary 2.

Throughout Sections 2.2 and 2.3 below, we denote the unit outward normal

to U\Aε on ∂Aε ∪ ∂U by −→n .

2.2. Proof of Proposition 2.2. We prove the proposition via a sequence

of lemmas. We begin with some notation. We denote the Green’s function

for µL by g(·, ·). Clearly, g(x, y) = G(x,y)
µ(y) . As before, whenever one of the

two variables of g is replaced with a measure, a function or a set, we should

interpret the expression as the integration of that variable with respect to the

corresponding measure, function or over the corresponding set (e.g., when α is a

measure, g(α, y) =
∫
D g(x, y)dα(x), when A is a subset, g(x,A) =

∫
A g(x, y)dy,

etc.). We also define µ̃L, the formal adjoint of µL. Then

µ̃L =
1

2
∇ · (a∇) − µ

(
b+ a

∇φc
φc

)
· ∇ −∇ ·

(
µ
(
b+ a

∇φc
φc

))
.

Let

b = −1

2
a∇µ+ µ

(
b + a

∇φ
φ

)
.

The operator L̃ was defined in (2.2). It satisfies: ∇·b = −L̃µ = 0. Consequently,

we have

µL = ∇ · (1

2
(µa∇) + b) =

1

2
∇ · (µa∇) + b · ∇, and

µ̃L = ∇ · (1

2
(µa∇) − b) =

1

2
∇ · (µa∇) − b · ∇.

Lemma 2.8: Let vε be the solution to




µ̃Lv = 0 on U\Aε;
v = Em1,εη1 on ∂Aε;

v = 0 on ∂U.
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Then

(1) dm1,ε(x) = 1
2µa∇vε(x) ·

−→n dx, and

(2) vε(y) = g(m1,ε, y) for all y ∈ U\Aε.

Proof. We define

(2.23) ρε(x) =
1

2
µa∇vε(x) · −→n (x), x ∈ ∂Aε.

Thus, ρε can be interpreted as the density of a finite measure supported on ∂Aε

with respect to the surface area. We will denote this measure by ρε as well.

Fix y ∈ U\Aε and for every δ > 0 sufficiently small, we let ϕδ be a smooth,

nonnegative function, supported on B2δ(y), which is identically 1 on Bδ(y).

Clearly, µLg(x, ϕδ) = −ϕδ(x). Hence,
∫

U\Aε

ϕδ(x)vε(x)dx = −
∫

U\Aε

µLg(x, ϕδ)vε(x)dx.

In particular, it follows that

vε(y) = − lim
δ→0

∫

U\Aε

µLg(x, ϕδ)vε(x)dx.

We integrate by parts the right-hand term:
∫

U\Aε

µLg(x, ϕδ)vε(x)dx =

∫

U\Aε

g(x, ϕδ)µ̃Lvε(x)dx

+

∫

∂Aε

(
1

2
µa∇g(x, ϕδ) + bg(x, ϕδ)

)
vε(x) · −→n dx

−
∫

∂Aε

1

2
µa∇vε(x)g(x, ϕδ) · −→n dx.

The first term on the right-hand side is equal to 0, because µ̃Lvε = 0. Since vε

is constant on ∂Aε and µL = ∇ · (1
2µa∇ + b), the divergence theorem for the

domain Aε implies that the second term is equal to
∫
Aε
ϕδ(x)dx. Our choice of

ϕδ guarantees that as δ tends to 0, this quantity converges to 0. The last term

is equal to

−
∫

U

ϕδ(z)

∫

∂Aε

1

2
µa∇vε(x)g(x, z) · −→n dxdz = −

∫

U

ϕδ(z)g(ρε, z)dz,

whose limit as δ tends to 0 is −g(ρε, y). Therefore we have proved that vε(y) =

g(ρε, y) for all y ∈ U\Aε. In order to complete the proof, we have to show that

ρε = m1,ε.
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The function g(ρε, ·) is µ̃L-harmonic on Aε and is identically Em1,εη1 on

∂Aε. Since g(x, y) = G(x,y)
µ(y) , (2.4) implies that g(ρε, y) = g(m1,ε, y) on ∂Aε.

Since both functions vanish on ∂U , it follows from the maximum principle that

they are equal on U\Aε. By the maximum principle for each of the domains

Ajε , j = 1, . . . , n, it follows that g(ρε, y) = g(m1,ε, y) = Em1,εη1 on Aε. Let

γ = ρε − m1,ε. Then γ is a signed measure, supported on ∂Aε and g(γ, y) is

identically 0 on Aε. Let A ⊂⊂ U be a compact subset of U and let {fk} ⊂ C2
c (U)

be a bounded sequence which converges to 1A pointwise. Since
∫
g(x, y)µLfk(y)dy = −fk(x),

integration of both sides with respect to γ yields:
∫
g(γ, y)µLfk(y)dy = −

∫
fk(x)dγ(x).

By assumption, the left-hand side equals 0. The right-hand side converges to

−γ(A), as k → ∞. This implies that γ ≡ 0, concluding the proof.

Next we show that EL has a representation as a surface integral on ∂Aε:

Lemma 2.9: Let u be the EL-capacitary potential ofAε in U . Then EL(Aε, U) =
1
2

∫
∂Aε

µa∇u · −→n dx.

Proof. The proof is straightforward. Since u = 1 on ∂Aε and ∇ · b = 0, by the

divergence theorem
∫
∂Aε

bu2 · −→n dx = 0. Since u = 0 on ∂U , we obtain

0 =

∫

∂Aε

bu2 · −→n dx =

∫

∂Aε∪∂U
bu2 · −→n dx =

∫

U\Aε

∇ · (bu2)dx.(2.24)

Consequently,

1

2

∫

∂Aε

µa∇u · −→n dx =

∫

∂Aε∪∂U

(
1

2
µa∇u+ bu

)
u · −→n dx.

Thus,

1

2

∫

∂Aε

µa∇u · −→n dx =

∫

U\Aε

∇ · (1

2
µa∇u+ bu)udx+

∫

U\Aε

1

2
µa∇u · ∇udx

+

∫

U\Aε

1

2
∇ · (bu2)dx,

where for the third term on the right-hand side we have used the fact that

∇ · (bu2) = b · ∇u2, because ∇ · b = 0. The first term on the right-hand side is
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∫
U\Aε

(µLu)udx = 0. The second term is EL(Aε, U). The third term is equal to

0 due to (2.24).

We are ready to prove Proposition 2.2. Let vε be as in Lemma 2.8 and let u

be as in Lemma 2.9. Noting that the restriction of u and vε to ∂Aε ∪ ∂U are

equal, we may apply (2.24) here to obtain
∫
∂Aε∪∂U bvεu · −→n dx = 0. Then, by

lemma 2.8,

1 = m1,ε(∂Aε) =

∫

∂Aε

1

2
µa∇vεu · −→n dx =

∫

∂Aε∪∂U

(
1

2
µa∇vε − bvε

)
u · −→n dx.

Consequently,

1 =

∫

U\Aε

∇·
(

1

2
µa∇vε − bvε

)
udx+

∫

U\Aε

1

2
µa∇vε ·∇udx−

∫

U\Aε

vεb ·∇udx.

The first term on the right-hand side is
∫
U\Aε

uµ̃Lvεdx = 0. Since 1
2µa∇vε·∇u =

1
2∇ · (vεµa∇u)− 1

2∇ · (µa∇u)vε, it follows that the last two terms are equal to
∫

∂Aε

vε
1

2
µa∇u · −→n dx −

∫

U\Aε

∇ ·
(

1

2
(µa∇u) + bu

)
vεdx.

By the definitions of vε and EL(Aε,U), the first term is equal to Em1,εη1EL(Aε,U).

As for the second term, it is equal to −
∫
U\Aε

vεµLudx = 0. Thus, we have

shown that 1 = Em1,εη1EL(Aε, U). The proof is now complete because Em1,εη1 =

Em2,εσ2.

2.3. Proof of Propositions 2.3 and 2.4.

Proof of Proposition 2.3. We prove both cases simultaneously. For (2.6), we

let uj , j = 1, . . . , n denote the EL-capacitary potential of Ajε in Uj . For (2.7),

uj is the capacitary potential of Ajε in Uj with respect to a. We remark that

the assumption that Ω is bounded if d = 2 was made to insure that u is not

constant.

Since u = uj = 1 on ∂Ajε , ∇uj and ∇u are positive, scalar multiples of
−→n , the outward unit normal to U\Ajε on ∂Ajε . By the maximum principle,

0 < uj ≤ u < 1 on Uj\Aε
j

hence ∇uj ·−→n ≥ ∇u ·−→n . Since a is positive definite,

(2.25) a∇uj · −→n ≥ a∇u · −→n .

Let vj = (1 − ρε)uj + ρε. Now u = vj = 1 on ∂Ajε and u ≤ vj on ∂Uj. Again,

by the maximum principle, 0 < u ≤ vj < 1 on Uj\Ajε . Hence

(2.26) (1 − ρε)a∇uj · −→n = a∇vj · −→n ≤ a∇u · −→n .
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In light of Lemma 2.9, (2.6) follows from (2.25) and (2.26). It is easy to see that

Capa(Aε,Ω) admits a similar representation to the one given by Lemma 2.9:

Capa(Aε,Ω) =
1

2

∫

∂Aε

a∇u · −→n dx.

Hence, (2.7) follows from (2.25) and (2.26) as well. Finally, by the standard

compactness argument, u→ 0 uniformly on compact subsets of U\{x1, . . . , xn},
as ε→ 0. Hence, limε→0 ρε = 0.

Proof of Proposition 2.4. Without loss of generality we may assume that x1 =

0. To simplify notation, we write Aε instead of A1
ε . We will prove that there

exists a constant C > 0 such that for every δ > 0 sufficiently small there exists

a domain Uδ ⊂⊂ D containing 0 with the property

(2.27) 1 − δC ≤
µ(0)Capa(0)(Aε, Uδ)

E(Aε, Uδ)
≤ 1 + δC, for all sufficiently small ε.

Once (2.27) is established, we can apply Corollary 1 to obtain

1 − δC ≤ lim inf
ε→0

µ(0)Capa(0)(Aε)

EL(Aε, Uδ)
≤ lim sup

ε→0

µ(0)Capa(0)(Aε)

EL(Aε, Uδ)
≤ 1 + δC.

Since δ is arbitrary, this concludes the proof of the proposition.

We now prove (2.27). Let b̂ = b + a∇φc

φc
. Then L = 1

2∇ · (a∇) + b̂ · ∇. We

define the constant-coefficients operator

L0 =
1

2
∇ · (a(0)∇) + b̂(0) · ∇.

Since a(0) is an invertible matrix, by letting Q(x) = a(0)−1b̂(0) · x, we have

b̂(0) = a(0)∇Q and

L0 =
1

2
e−2Q∇ · (e2Qa(0)∇).

Fix a subdomain U0 ⊂⊂ D such that 0 ∈ U0. We choose a constant C1 > 0

such that the following conditions will hold:

|v|2 ≤ C1v · e2Q(x)a(0)v, ∀x ∈ U0 and ∀v ∈ R
d;(2.28)

1

C 1
|v|2 ≤ v · (µa)(x)v ≤ C1|v|2, ∀x ∈ U0 and ∀v ∈ R

d;(2.29)

sup
x∈U0

|e2Q(x)| + sup
x∈U0

|∇e2Q(x)| ≤ C1.(2.30)

For a domain F we denote the principal eigenvalue of −∆ on F with the Dirichlet

boundary condition on ∂F by ρF . In the sequel, whenever Aε ⊂⊂ F , we will

write ρF,ε meaning ρF\Aε
. We recall that in this case, ρF,ε > ρF and that in
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general, ρF → ∞, as F shrinks to a point. We denote the operator norm of a

real d× d matrix acting on R
d, equipped with the standard Euclidean norm by

||| · |||.
Let a1(x) = µ(0)e2Q(x)a(0). For δ > 0, we choose a domain Uδ ⊂ U0 with

0 ∈ Uδ satisfying:

1 − δ ≤ v · (µa)(x)v
v · a1(y)v

≤ 1 + δ, ∀x, y ∈ Uδ, v ∈ R
d\{0};

(2.31)

sup
x∈Uδ

|||a(x) − a(0)||| + sup
x∈Uδ

|||(µa)(x) − (µa)(0)||| + sup
x∈Uδ

|b(x) − b(0)| < δ;

(2.32)

ρUδ

2C2
1

> 1.

(2.33)

If Λ is a continuous positive definite matrix-valued function and ϕ is a vector

field on Uδ\Aε, then define

‖ϕ‖2
Λ =

1

2

∫

Uδ\Aε

ϕ · Λϕdx.

This definition should not be confused with the norm on R
d defined in (1.5).

Abusing notation, we will use ‖ · ‖ as short notation for ‖ · ‖Id as well as for the

L2 norm for a scalar function on Uδ\Aε.
Let uε denote the capacitary potential of Aε in Uδ with respect to e2Qa(0).

Let vε denote the EL-capacitary potential of Aε in Uδ. Set ψε = uε − vε. Then,

We have

(2.34)




L0ψε = 1

2∇ · ((a− a(0))∇vε) + (b̂− b̂(0)) · ∇vε in Uδ\Aε;
ψε = 0 on ∂Uδ ∪ ∂Aε.

Multiply both sides by −e2Qψε and integrate over Uδ\Aε. One obtains

−
∫

Uδ\Aε

ψεe
2QL0ψεdx

(2.35)

= −1

2

∫

Uδ\Aε

ψεe
2Q∇ · ((a− a(0))∇vε)dx −

∫

Uδ\Aε

ψεe
2Q(b̂ − b̂(0)) · ∇vεdx

≡ (I) + (II).
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On the other hand, since ψε vanishes on ∂Uδ ∪ ∂Aε, the divergence theorem

gives

(2.36)

‖∇ψε‖2
e2Qa(0) =

1

2

∫

Uδ\Aε

∇ψε · e2Qa(0)∇ψεdx = −
∫

Uδ\Aε

ψεe
2QL0ψεdx.

Thus, by (2.28), (2.35) and (2.36),

(2.37) ‖∇ψε‖2 ≤ C1 [(I) + (II)]

By (2.30) and (2.32),

(2.38) |(II)| ≤ δC1‖ψε‖‖∇vε‖ ≤ δC1(‖ψε‖ + ‖∇ψε‖)‖∇vε‖.

The divergence theorem gives

|(I)| =

∣∣∣∣
1

2

∫

Uδ\Aε

∇(e2Qψε) · (a− a(0))∇vεdx
∣∣∣∣.

By (2.32) we have

(2.39) |(I)| ≤ δ

2

∫

Uδ\Aε

|∇(e2Qψ)||∇vε|dx.

Now, |∇(e2Qψε)| ≤ |ψε∇e2Q| + |e2Q∇ψε|, therefore by (2.30), |∇(e2Qψε)| ≤
C1(|∇ψε| + |ψε|) and it follows from (2.39) that

(2.40) |(I)| ≤ δC1(‖ψε‖ + ‖∇ψε‖)‖∇vε‖.

Thus from (2.37), (2.40) and (2.38) we obtain

(2.41) ‖∇ψε‖2 ≤ 2C2
1δ(‖ψε‖ + ‖∇ψε‖)‖∇vε‖,

By the Poincaré inequality,

ρUδ,ε‖ψε‖2 ≤ ‖∇ψε‖2.

Therefore (2.41) gives

ρUδ,ε‖ψε‖2 − 2C2
1δ‖∇vε‖‖ψε‖ − 2C2

1δ‖∇ψε‖‖∇vε‖ ≤ 0.

This is a quadratic inequality in ‖ψε‖. Thus,

‖ψε‖ ≤ 2C2
1δ‖∇vε‖ +

√
4C4

1δ
2‖∇vε‖2 + 8C2

1δρUδ,ε‖∇ψε‖‖∇vε‖
2ρUδ,ε

=
C2

1δ‖∇vε‖
(
1 +

√
1 +

2ρUδ,ε‖∇ψε‖
C2

1δ‖∇vε‖

)

ρUδ,ε



206 IDDO BEN-ARI Isr. J. Math.

Plugging this inequality back in (2.41), we obtain

‖∇ψε‖2 ≤ 2C4
1δ

2‖∇vε‖2

ρUδ,ε

(
1 +

√
1 +

2ρUδ,ε‖∇ψε‖
C2

1δ‖∇vε‖

)
+ 2C2

1δ‖∇ψε‖‖∇vε‖.

After dividing by (δ‖∇vε‖)2, we are left with the inequality

( ‖∇ψε‖
δ‖∇vε‖

)2

≤
2C4

1

(
1 +

√
1 +

2ρUδ,ε

C2
1

‖∇ψε‖
δ‖∇vε‖

)

ρUδ,ε
+ 2C2

1

‖∇ψε‖
δ‖∇vε‖

.

Letting ζ = ‖∇ψε‖
δ‖∇vε‖ , the above inequality may be rewritten as

(2.42) ζ2 ≤ 2C4
1

ρUδ,ε

(
1 +

√
1 +

2ρUδ,ε

C2
1

ζ

)
+ 2C2

1ζ.

Assume that ζ > 1. It follows from (2.33) that the expression under the root

sign in (2.42) is bounded above by 2
2ρUδ,εζ

C2
1

< (
2ρUδ,εζ

C2
1

)2. We obtain

ζ2 ≤ 2C4
1

ρUδ,ε
+

2C4
1

ρUδ,ε

2ρUδ,εζ

C2
1

+ 2C2
1ζ < C2

1 ζ + 4C2
1ζ + 2C2

1ζ = 7C2
1ζ.

Thus, ζ ≤ C3 ≡ max(7C2
1 , 1). From the definition of ζ we obtain

‖∇ψε‖ ≤ δC3‖∇vε‖.

With (2.29) we have

(2.43) ‖∇ψε‖µa ≤
√
C1‖∇ψε‖ ≤ δ

√
C1C3‖∇vε‖.

Since

| ‖∇uε‖µa − ‖∇vε‖µa | ≤ ‖∇ψε‖µa,
we obtain

| ‖∇uε‖µa − ‖∇vε‖µa | ≤ δ
√
C1C3‖∇vε‖,

where the second inequality follows from (2.43). Dividing by ‖∇vε‖µa, we obtain

1 − δ
√
C1C3

‖∇uε‖µa
‖∇vε‖µa

≤ 1 + δ
√
C1C3.

Recall that ‖∇vε‖2
µa = EL(Aε, Uδ). Taking the squares of the above inequalities,

we get

(2.44) (1 − δ
√
C1C3)

2
‖∇uε‖2

µa

EL(Aε, Uδ)
≤ (1 + δ

√
C1C3)

2.
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Finally, we compare between ‖∇uε‖2
µa and µ(0)Capa(0)(Aε, Uδ). Let wε denote

the capacitary potential of Aε in Uδ with respect to a(0). Define the set M by

letting

M = {v ∈ C∞
c (Uδ) : v ≥ 1 on Aε}.

We have

Capa(0)(Aε, Uδ) = ‖∇wε‖2
a(0) = inf

v∈M
‖∇v‖2

a(0)

and

Capa1
(Aε, Uδ) = ‖∇uε‖2

a1
= inf
v∈M

‖∇v‖2
a1
.

By (2.31),

‖∇uε‖2
µa ≤ (1 + δ)Capa1

(Aε, Uδ) ≤ (1 + δ)‖∇wε‖2
a1

≤ 1 + δ

1 − δ
µ(0)Capa(0)(Aε, Uδ)

=
1 + δ

1 − δ
µ(0)‖∇wε‖2

a(0) ≤
1 + δ

1 − δ
‖∇uε‖2

(µa)(0).

It also follows from (2.31) that

‖∇uε‖2
(µa)(0) ≤

1 + δ

1 − δ
‖∇uε‖2

µa.

We, therefore, obtain

(2.45)
1 − δ

1 + δ
≤

‖∇uε‖2
µa

µ(0)Capa(0)(Aε, Uδ)
≤ 1 + δ

1 − δ
.

Thus, (2.27) follows immediately from (2.44) and (2.45).

3. Proof of Theorem 1.3

In order to exploit the radial symmetry the model has near the centers of

the obstacles, we will assume that U ⊂ D is the disjoint union of balls Uj,

j = 1, . . . , n, all of which with the same radius, the center of Uj being xj . In

what follows, we will only consider ε sufficiently small, such that Ajε ⊂ Uj for

all j. This choice of U is in contrast with the hard obstacle case where U was

taken to be connected. We let m1,ε and m2,ε denote the invariant measures on

∂Aε and ∂U , respectively, as defined in the beginning of Section 2. Although

U is not a domain unless n = 1, Lemma 2.8 remains true in this case as well,

the proof requires no changes. As a result, we note that m1,ε is uniform on ∂Ajε
and m1,ε(A

j
ε) = 1/n.
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We state two lemmas and then give the proof of Theorem 1.3. After that, we

return to prove the lemmas.

Lemma 3.1: Let

ρε = Em2,ε exp

(
−
∫ σ2

0

Wε(X(s))ds

)
.

Then,

Em2,ε

∫ ∞

0

exp

(
−
∫ t

0

Wε(X(s))ds

)
dt ∼ Em2,ετε

1 − ρε
, as ε→ 0.

Lemma 3.2:

−(λc,ε)
−1 ∼ Em2,ε

∫ ∞

0

exp

(
−
∫ t

0

Wε(X(s))ds

)
dt.

Proof of Theorem 1.3. By Lemmas 3.1 and 3.2,

−λc,ε ∼
1 − ρε
Em2,ετε

,

as ε → 0. The asymptotic behavior of (Em2,ετε)
−1 is already known from

Proposition 2.1 and Theorem 1.2:

(Em2,ετε)
−1 ∼





π
ln ε−1

∑n
j=1 φ̃c(xj) d = 2;

d(d−2)ωdε
d−2

2

∑n
j=1 φ̃c(xj) d ≥ 3.

Thus,

(3.1) −λc,ε ∼ (1 − ρε) ×





π
ln ε−1

∑n
j=1 φ̃c(xj) d = 2;

d(d−2)ωdε
d−2

2

∑n
j=1 φ̃c(xj) d ≥ 3.

It only remains to evaluate the asymptotics of 1−ρε. Without loss of generality,

we may assume that x1 = 0. We note that ρε = Em1,ε exp(−
∫ η1
0
Wε(X(s))ds).

Let e1 denote the vector (1, 0, . . . , 0) ∈ R
d. Due to radial symmetry, we have

(3.2) ρε = Eεe1 exp

(
−
∫ η1

0

Wε(X(s))ds

)

It is easier to work with an obstacle whose support is fixed, rather than a

shrinking one. Such a reduction is achieved by Brownian scaling. Let Y be

Brownian motion on R
d. For E ⊂ R

d we let τYE = inf{t ≥ 0 : Y (t) ∈ ∂E}. Let

x ∈ B1(0). The distribution of {ε−1X(tε2) : 0 ≤ t < ε−2τB1(0)}, starting at x

coincides with the distribution of {Y (t) : 0 ≤ t < τYBε−1 (0)}, starting at ε−1x.
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Abusing notation, we denote the function x → W (|x|) by W . After rescaling

(3.2), ρε has the following representation:

ρε = Ee1 exp

(
− g(ε)ε2

∫ τY
B

ε−1(0)

0

W (Y (s))ds

)
.

The proof will be divided according to the dimension d and the asymptotics of

g(ε)ε2.

(1) d ≥ 3 and γ ∈ (0,∞). Since Y is transient, bounded convergence gives

ρ ≡ lim
ε→0

ρε = Ee1 exp

(
− γ

∫ ∞

0

W (Y (s))ds

)
.

Hence ρ = u(1), where u = u(r) is the minimal positive solution to

(3.3)





1
2u

′′ + d−1
2r u

′ − γWu = 0 on [0,∞);

u′(0) = 0;

limr→∞ u(r) = 1.

Recall that when γ ∈ (0,∞), we are assuming thatW ≡ β1[0,1]. We now

show that in this case, ρ can be expressed in terms of modified Bessel

functions. For r ≥ 1, the differential equation in (3.3) is equivalent to
1
2 (r1−d(rd−1u′)′) = 0. Therefore,

u(r) = C1r
2−d + 1, for r ≥ 1.

For r ∈ (0, 1), we transform the differential equation in (3.3) to a Bessel

equation by a change of variables. Then u satisfies

(3.4) u′′ +
d− 1

r
u′ − 2γβu = 0, r ∈ (0, 1)

Let

w(z) =

(
z√
2γβ

)d/2−1

u
( z√

2γβ

)
.

Then one easily verifies that

(3.5) z2w′′ + zw′ − (z2 + (1 − d/2)2)w = 0, z ∈ (0,
√

2γβ).

Equation (3.5) is a modified Bessel equation. Every solution is a linear

combination of I1−d/2 and Id/2−1, where Ip is as in (1.6) [11, page 138].

Since u(z) = z1−d/2w(
√

2γβz), it follows that

(3.6) u(z) = z1−d/2
(
AId/2−1(

√
2γβz) +BI1−d/2(

√
2γβz)

)
.
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It follows from the power series representation (1.6) that

lim
z→0

|z1−d/2I1−d/2(
√

2γβz)| = ∞

and that z1−d/2Id/2−1(
√

2γβz) is analytic with the exception of a re-

movable singularity at the origin. These observations imply that B = 0.

One can verify directly from (1.6) that

(z−pIp)
′(z) = z−pIp+1(z).

Therefore, u′(1−) =
√

2γβAId/2(
√

2γβ). Since u and u′ are continuous

at 1, C1 and A are determined by the following equations:

C1 + 1 = u(1+) = u(1−) = AId/2−1(
√

2γβ)

(2 − d)C1 = u′(1+) = u′(1−) = A
√

2γβId/2(
√

2γβ).

Since ρ = u(1) = C1 + 1, after solving these equations we find that

1 − ρ = −C1 =

√
2γβId/2(

√
2γβ)

(d− 2)Id/2−1(
√

2γβ) +
√

2γβId/2(
√

2γβ)
.

This with (3.1) gives Theorem 1.3 (2) for d ≥ 3.

(2) d ≥ 3 and γ = ∞. By bounded convergence, limε→0 ρε = 0; hence

1 − ρε ∼ 1. This with (3.1) gives Theorem 1.3 (3) for d ≥ 3.

(3) d = 2 and γ ∈ (0,∞). The proof is essentially the same as for the

corresponding case where d ≥ 3. However, because of recurrence, we

cannot take the limit ε→ 0. Therefore, (3.3) is replaced by the following

problem:

(3.7)





1
2u

′′ + 1
2ru

′ − g(ε)ε21[0,1]u = 0 r ∈ (0, ε−1);

u′(0) = 0;

u(ε−1) = 1;

We denote the solution by uε. Then clearly, ρε = uε(1). We have

uε(r) = C1(ln r + ln ε) + 1, for r ∈ (1, ε−1).

The discussion following (3.3) leading to (3.6) was independent of the

assumption on the dimension, therefore (3.6) also holds in the present

case. In particular,

uε(r) = AI0(
√

2g(ε)εr), r ≤ ε−1.
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The compatibility equations are the following:

C1 ln ε+ 1 = uε(1
+) = uε(1

−) = AI0(
√

2g(ε)ε)

C1 = u′ε(1
+) = u′ε(1

−) = A
√

2g(ε)εI1(
√

2g(ε)ε),

From which we obtain

(3.8) (1 − ρε) = (1 − uε(1)) =
(
1 +

I0(
√

2g(ε)ε)√
2g(ε)ε ln ε−1I1(

√
2g(ε)ε)

)−1

.

By (1.6), I0(z) =
∑∞
k=0

(z/2)2k

(k!)2 and I1(z) =
∑∞

k=0
(z/2)1+2k

k!(k+1)! . In par-

ticular, I0(z)/I1(z) ∼ 2/z as z → 0. Since limε→0

√
2g(ε)ε = 0, we

obtain
I0(
√

2g(ε)ε)

I1(
√

2g(ε)ε)
∼ 2√

2g(ε)ε
.

Thus, by (3.8),

(1 − ρε) ∼
(
1 +

1

g(ε)ε2 ln ε−1

)−1

∼
(
1 +

1

γ

)−1

.

This with (3.1) gives Theorem 1.3-(2) for d = 2.

(4) d = 2 and γ = ∞. For every γ̃ ∈ (0,∞),

(1 + 1/γ̃)−1 ≤ lim inf
ε→0

(1 − ρε) ≤ lim sup
ε→0

(1 − ρε) ≤ 1.

Thus, we have

lim
ε→0

(1 − ρε) = 1.

This with (3.1) gives Theorem 1.3 (3) for d = 2.

(5) d ≥ 2 and γ = 0. Define

uε(x) = Ex exp

(
− g(ε)ε2

∫ τY
B

ε−1(0)

0

W (Y (s))ds

)
, x ∈ Bε−1(0).

Then ρε = uε(e1) and uε is the solution to




1
2∆u− g(ε)ε2Wu = 0 in Bε−1(0);

u = 1 on ∂Bε−1(0).

We also define

wε(x) = g(ε)ε2Ex

∫ τY
B

ε−1 (0)

0

W (Y (s))ds, x ∈ Bε−1(0) and

vε(x) = 1 − (1 − wε(0))wε(x), x ∈ Bε−1(0).
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Since e−t ≥ 1 − t, t ∈ R, we note that

(3.9) 1 − wε(x) ≤ uε(x).

Consequently,

(3.10) 1 − ρε = 1 − uε(e1) ≤ wε(e1).

It is clear that wε is radially symmetric and satisfies 1
2∆wε = −g(ε)ε2W .

Therefore by solving the corresponding ODE’s we can see that for all

|x| ≤ 1,

(3.11) wε(x) =





2g(ε)ε2
∫ 1

0 W (t)t
[
ln ε−1 − ln(|x| ∨ t)

]
dt d = 2;

2
d−2g(ε)ε

2
∫ 1

0
W (t)td−1

[
(|x| ∨ t)2−d − εd−2

]
dt d ≥ 3.

We observe that the maximum of wε is attained at 0. We claim that

(3.12) lim
ε→0

wε(0) = 0.

If d ≥ 3, then (3.12) holds as an immediate consequence of the defini-

tion of wε, because Y is transient. If d = 2, then by (3.11), wε(0) ∼
2g(ε)ε2 ln ε−1

∫ 1

0
W (t)tdt. The last quantity goes to 0, as ε → 0, giving

(3.12).

From now on we restrict the discussion to ε > 0 sufficiently small so

that wε(0) < 1. Now,

1

2
∆vε = g(ε)ε2(1 − wε(0))W ≤ g(ε)ε2(1 − wε(x))W ≤ g(ε)ε2Wuε =

1

2
∆uε,

where the last inequality follows from (3.9). Hence by the maximum

principle, vε ≥ uε. In particular,

(3.13) 1 − ρε = 1 − uε(e1) ≥ 1 − vε(e1) = (1 − wε(0))wε(e1).

Summarizing, the inequalities (3.13) and (3.10), give us

(1 − wε(0))wε(e1) ≤ 1 − ρε ≤ wε(e1),

and it follows from (3.12) that

(3.14) 1 − ρε ∼ wε(e1).

We continue according to the dimension d. If d ≥ 3, then by (3.11) and

(3.14) we have

(3.15) 1 − ρε ∼
2g(ε)ε2

d− 2

∫ 1

0

W (t)td−1dt.
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If d = 2, then by (3.11) and (3.14) we have

(3.16) 1 − ρε ∼ 2g(ε)ε2 ln ε−1

∫ 1

0

W (t)tdt.

Theorem 1.3 (1) follows from (3.1), (3.15) and (3.16).

Proof of Lemma 3.1. Decompose the time interval [0,∞) into cycles [σn, σn+1),

where n ∈ N. Each cycle consists of two parts — one part from the beginning of

the cycle until the hitting of the obstacle, and the other part from the hitting of

the obstacle until the end of the cycle. These two parts correspond, respectively,

to the time intervals [σn, ηn) and [ηn, σn+1). We have

Em2,ε

∫ ∞

0

exp

(
−
∫ t

0

Wε(X(s))ds

)
dt =

∞∑

n=1

Em2,ε(Fn + Sn),

where

Fn =

∫ ηn

σn

exp

(
−
∫ t

0

Wε(X(s))ds

)
dt,and

Sn =

∫ σn+1

ηn

exp

(
−
∫ t

0

Wε(X(s))ds

)
dt.

Note that in the first part, the process does not visit the obstacle, which implies

that the integrand in the definition Fn is exp(−
∫ σn

0 Wε(X(s))ds). Thus,

Fn = (ηn − σn) exp

(
−
∫ σn

0

Wε(X(s))ds

)
, and

Sn = exp

(
−
∫ σn

0

Wε(X(s))ds

)∫ σn+1

ηn

exp

(
−
∫ t

ηn

Wε(X(s))ds

)
dt.(3.17)

We first estimate
∑∞

n=1 Em2,εFn. By the strong Markov property,

Em2,εFn = Em2,ε exp

(
−
∫ σn

0

Wε(X(s))ds

)
EX(σn)τε.

By Corollary 2, for any δ ∈ (0, 1),

(1 − δ)Em2,ετε ≤ Exτε ≤ (1 + δ)Em2,ετε, x ∈ ∂U,

provided that ε > 0 is sufficiently small. Consequently,

∞∑

n=1

Em2,εFn ∼ Em2,ετε

∞∑

n=1

Em2,ε exp

(
−
∫ σn

0

Wε(X(s))ds

)
, as ε→ 0.
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We will show that

(3.18) Em2,ε exp

(
−
∫ σn

0

Wε(X(s))ds

)
= ρn−1

ε .

This yields

(3.19)

∞∑

n=1

Em2,εFn ∼ Em2,ετε

1 − ρε
, as ε→ 0.

To prove (3.18), fix n ∈ N and note that

Em2,ε exp

(
−
∫ σn+1

0

Wε(X(s))ds

)
= Em1,ε exp

(
−
∫ σn

0

Wε(X(s))ds

)
.

By the strong Markov property,

Em1,ε

[
exp

(
−
∫ σn

0

Wε(X(s)ds

)
|Fηn−1

]

= exp

(
−
∫ σn−1

0

Wε(X(s))ds

)
EX(ηn−1) exp

(
−
∫ σ1

0

Wε(X(s))ds

)
.

Due to radial symmetry, for x ∈ ∂Aε

Ex exp(−
∫ σ1

0

Wε(X(s))ds) = Em1,ε exp

(
−
∫ σ1

0

Wε(X(s))ds

)
= ρε.

This implies that

Em1,ε exp

(
−
∫ σn

0

Wε(X(s))ds

)
= ρεEm1,ε exp

(
−
∫ σn−1

0

Wε(X(s))ds

)
,

and (3.18) follows by induction.

We now estimate
∑∞
n=1 Em2,εSn. Let

Rε = Em1,ε

∫ σ1

0

exp

(
−
∫ t

0

Wε(X(s))ds

)
dt.

Again, by radial symmetry, for all x ∈ ∂Aε,

(3.20) Rε = Ex

∫ σ1

0

exp

(
−
∫ t

0

Wε(X(s))ds

)
dt.

We now prove that

(3.21)
∞∑

n=1

Em2,εSn =
Rε

1 − ρε
=

O(1)

1 − ρε
.
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By (3.17) and the strong Markov property,

Em2,εSn = Em2,ε

[
exp

(
−
∫ σn

0

Wε(X(s))ds

)
EX(ηn)

×
∫ σ1

0

exp

(
−
∫ t

0

Wε(X(s))ds

)
dt

]

= Em2,ε exp

(
−
∫ σn

0

Wε(X(s))ds

)
Rε.

Therefore, (3.18) and (3.20) imply that

Em2,εSn = ρn−1
ε Rε.

Since Rε = O(1), (3.21) follows. The lemma is an immediate consequence of

(3.19) and (3.21).

Proof of Lemma 3.2. We adopt the notation from Lemma 2.7. In addition, we

let Gε(·, ·) denote the Green’s function for Lε. Abusing notation, the measure

whose density is
∫
Gε(x, ·)dm2,ε(x) will be also denoted byGε. By the Feynman-

Kac formula

Gε(D) = Em2,ε

∫ ∞

0

exp

(
−
∫ t

0

Wε(X(s))ds

)
dt.

Then by Lemma 3.1,

(3.22) Gε(D) ∼ Em2,ετε

1 − ρε
, as ε→ 0.

Since

φε(x) = −λc,ε
∫
Gε(x, y)φε(y)dy,

integrating both sides with respect to dm2,ε, the normalization
∫
∂U φεdm2,ε = 1

(2.16) implies that

(3.23) −λc,ε =

(∫

D

φεdGε

)−1

.

In light of (3.22) and (3.23), in order to prove the lemma, it is enough to show

that

(3.24)

∫

D

φεdGε ∼ Gε(D), as ε→ 0.

It is clear that

Gε(D) −
∫

D

|1 − φε|dGε ≤
∫

D

φεdGε ≤ Gε(D) +

∫

D

|1 − φε|dGε.
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Hence (3.24) will be established once we show that

(3.25) lim
ε→0

∫
D
|1 − φε|dGε
Gε(D)

= 0.

We now prove (3.25). Fix δ > 0. Let V ⊂⊂ D\{x1, . . . , xn} be closed and

let E = D\V . We further assume that µ(E) < δ. By Lemma 2.7, {φε}ε>0

converges uniformly to 1 on V . By recurrence, limε→0Gε(D) = ∞, and

(3.26) lim sup
ε→0

∫
V |1 − φε|dGε
Gε(D)

= 0.

We will prove below that

(3.27) lim sup
ε→0

Gε(E)

Gε(D)
≤ 2δ.

Lemma 2.7 also guarantees that {φε}ε>0 are uniformly bounded, say by C > 0.

It follows from (3.27) that
∫

E

|1 − φε|dGε < (1 + C)Gε(E) < 3δ(1 + C)Gε(D), for ε sufficiently small.

Using this with (3.26) gives

lim sup
ε→0

∫
D
|1 − φε|dGε
Gε(D)

< 3δ(1 + C).

Since δ is arbitrary, this proves (3.25). It remains to prove (3.27). Similarly to

what we did in the proof of Lemma 3.1, we can write

Gε(E) =

∞∑

n=1

Fn +

∞∑

n=1

Sn,

where

Sn = Em2,ε

∫ ηn

σn

1E(X(t)) exp

(
−
∫ t

0

Wε(X(s))ds

)
dt, and

Fn = Em2,ε

∫ σn+1

ηn

1E(X(t)) exp

(
−
∫ t

0

Wε(X(s))ds

)
dt.

Let f be a smooth function such that f ≥ 1E . Since we assume that µ(E) < δ,

we may choose f that also satisfies
∫
D fdµ ≤ δ. We have

Fn = Em2,ε exp

(
−
∫ σn

0

Wε(X(s))ds

)
EX(σn)

∫ η1

0

1E(X(t))dt

≤ Em2,ε exp

(
−
∫ σn

0

Wε(X(s))ds

)
EX(σn)

∫ η1

0

f(X(t))dt.
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Therefore by (3.18),

Fn ≤ ρn−1
ε max

x∈∂U
Ex

∫ τε

0

f(X(t))dt.

By Lemma 2.6, we then obtain

Fn ≤ 2ρn−1
ε Em2,ε

∫ τε

0

f(X(t))dt,

provided that ε is sufficiently small. Next, the last term on the right-hand side

is bounded above by Em2,ε

∫ σ2

0
f(X(t))dt = Em1,ε

∫ η1
0
f(X(t))dt. By Khasmin-

skii’s construction in (2.3), the last quantity is equal to
∫

D

fdµEm1,εη1 =

∫
fdµ(O(1) + Em2,ετε).

It follows that

Fn ≤ 2ρn−1
ε δ(Em2,ετε +O(1)).

Thus,

(3.28)

∞∑

n=1

Fn ≤ 2δ(Em2,ετε +O(1))

1 − ρε
.

Note that

Sn ≤ Em2,εSn,

where Sn is as in the proof of Lemma 3.1. Hence by (3.28) and (3.21) we get

(3.29) Gε(E) =

∞∑

n=1

(Fn + Sn) ≤ 2δ(Em2,ετε +O(1)) +O(1)

1 − ρε
.

Finally, (3.27) follows from (3.29) and (3.22).

4. Proof of Theorem 1.4

We will prove the theorem for d ≥ 3, the case d = 2 being treated mutatis

mutandi.

Proof. Since (−λc) is obviously nondecreasing in β, it is sufficient to prove the

theorem for β ∈ [0,∞). By hypothesis,

lim
m→∞

mr(m)d−2 = β ∈ [0,∞), and

mδ(m)d ∼ |D|.
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Therefore,

(4.1) lim
m→∞

δ(m)−dr(m)d−2 = β/|D|.

Since limm→∞ r(m) = 0, this implies that

(4.2) lim
m→∞

r(m)/δ(m) = 0.

Let λ(r, δ) denote the principal eigenvalue for 1
2∆ in the box [−δ/2, δ/2]d subject

to the obstacle rK. By scaling, we see that λ(r, δ) = δ−2λ(r/δ, 1). It follows

from (4.2) and Theorem 1.1 that

−λ(r(m), δ(m)) ∼ r(m)d−2

δ(m)d
CapId(K).

Therefore (4.1) gives

(4.3) lim
m→∞

λ(r(m), δ(m)) = −βCapId(K)

|D| .

We extend the obstacle Am to R
d, by translations of the δ(m)-lattice. Let

Cm be the maximal union of δ(m)-translations of the hypercube [− δ(m)
2 , δ(m)

2 ]d

which are contained in D. Let Bm be the minimal union of translations of such

hypercubes which contains D. By symmetry, the principal eigenvalue for a sin-

gle hypercube with the Neumann boundary condition on its boundary coincides

with that of Cm and with that ofBm. It is also clear that if ϕm is the correspond-

ing eigenfunction for Bm, then in fact it is periodic with respect to the lattice.

By the Rayleigh-Ritz formula, −λ(m)
c = infu∈C∞(D)

∫
D

|∇u|2dx∫
D
u2dx

. It follows that

−λ(m)
c ≤

∫
D

|∇ϕm|2dx∫
D
ϕ2

mdx
. The numerator is less than or equal to

∫
Bm

|∇ϕm|2dx.
If L(m) is the number of hypercubes in Bm, then M(m)/L(m) ∼ 1. Now∫
D ϕ

2
m ≥

∫
Cm

ϕ2
m = M(m)

L(m)

∫
Bm

ϕ2
m. Letting m→ ∞, we obtain

(4.4) lim sup
m→∞

(−λ(m)
c ) ≤ lim

m→∞
(−λ(r(m), δ(m))).

The lower bound requires more work. In what follows, C is a positive con-

stant which may change from line to line. Let um be the eigenfunction for cor-

responding to λ
(m)
c , normalized by

∫
D u

2
m = 1. For u ∈ W 1,2(D) let ‖u‖2,1 =

√
‖|∇u|‖2

2 + ‖u‖2
2 be its Sobolev space norm. Then ‖um‖2,1 =

√
1 − λ

(m)
c .

Thus by (4.4), ‖um‖2,1 ≤ C for all m ∈ N. By the Sobolev inequality,

‖um‖q ≤ C‖um‖2,1, where q satisfies 1/q = 1/2 − 1/d. Thus, ‖um‖q ≤ C.
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Let µ denote Lebesgue measure on R
d. Then for every measurable A ⊂ D,

Hölder’s inequality gives

(4.5)

∫

A

u2
m ≤

(∫
uqm

)2/q

µ(A)(q−2)/q ≤ Cµ(A)(q−2)/q .

We can now prove the lower bound. By the Rayleigh–Ritz formula,

−λ(r(m), δ(m)) = inf
u∈C∞(Cm)

∫
Cm

|∇u|2∫
Cm

u2
≤
∫
Cm

|∇um|2∫
Cm

u2
m

.

The numerator on the right-hand side is bounded above by
∫
D |∇um|2. By

(4.5), the denominator is bounded below by 1 − Cµ(D\Cm)
q−2

q . Hence

−λ(r(m), δ(m)) ≤ (1 − Cµ(D\Cm)
q−2
2 )−1(−λ(m)

c ),

and we obtain the lower bound

(4.6) lim inf
m→∞

(−λ(m)
c ) ≥ lim

m→∞
−λ(r(m), δ(m))

The theorem now follows from (4.3), (4.4) and (4.6).
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